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COMPUTER SOLUTION OF A KINETIC EQUATION FOR ELECTRONS
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Physical and mathemartical approaches are presented for the be-
havior of a weakly ionized plasma in a thermoelectronic converter,
Numerical solutions are obtained by computer methods. The distribu-
tion function for the electrons is examined in series form for a Boltz-
mann kinetic equation subject to boundary conditions; the coefficients
of the series are deduced via moment equations, The electric field is
incorporated in the quasineutrality approximation. An example
envisaging only electron-atom collisions is presented.

Consider two unbounded planar electrodes (cathode and anode)
heated to different temperatures, between which lies a weakly ionized
plasma subject to a potential difference, From the electrodes flow ion
and electron fluxes into the plasma, where ionization and recombina-
tion can occur. The quantities to be determined are the current, the
potential distribution, the temperature, and the charge density. This
problem occurs for a cesium converter in the arc mode, If the volume
ionization can be neglected, the processes are closely described by
the diffusion theory [1], but it is desirable to have more detailed
information about the distribution function for the electrons when
ionization, excitation, and recombination become important. The
diffusion theory is then replaced by a Boltzmann kinetic equation, but
this greatly increases the computational difficulties. The present
approach envisages the use of computers.

The method of solution is basically as follows. The electron-
distribution function in the kinetic equation is replaced by a series
in some complete set of functions of the velocity coordinates. There
is a second system of independent functions; these are multiplied by
the two parts of the kinetic equation, whereupon integration over
velocity space gives differential equations of first order in the spatial

coordinates for the parameters of the series for the distribution function.

These are balance equations or equations for the moments with respect
to the above system of independent functions (usually these are poly-
nomials in the velocity coordinates).

We select from this system a subsystem of functions, which we
multiply by the boundary conditions for the kinetic equation and
integrate over the region where they are given (i.e., with respect to
the velocity of the electrons leaving the electrode). This gives the
boundary conditions for the differential equations for the moments,

Varieties of this method are to be seen in Grad's (2] and Weitzsch's
[3] methods in gas dynamics, or the method of spherical harmonics
[4,5] in neutron physics; see [6] for review, The method of expansion
used here differs from Grad's method in that I use functions of the
energy and spherical angles in velocity space, whereas Grad used
functions of the cartesian coordinates of the velocity. Moreover, the
zero-th-approximation functionistaken as the isotropic exp( —mi? /2KT)
instead of Grad's anisotropic exp[—m(v — v()/2KT] (m is electron
mass, T is temperature, k is Boltzmann's constant, v is particle
velocity, and v, is the mean particle velocity). These differences
are introduced for the following reasons, The electrons in a weakly
ionized plasma collide frequently with neutral atoms, so there is more
rapid relaxation in momentum than in energy [7], and the distribution
function differs little from isotropic, On the other hand, a principal
purpose here is to examme the inelastic processes of ionization and
excitation, and the major feature is the energy distribution of the
electrons without reference to the orientation of the momentum vector.
Hence we need take only the first two terms in the expansion with
respect to the spherical coordinate u = vx/v (the P; approximation in
the method of spherical harmonics).

We also take account of the electric field set up by the space
charge.

Let d be the distance between cathode and anode, V be the poten-
tial differences, r the Debye radius, n, and n_ the concentrations of

ions and electrons, and q the charge on an electron. Asin[1], we
consider the case where the main change in the electrical potential
U occurs near the electrodes in regions of scale 1, while the rest of
the region obeys the quasineutrality condition |n, — n_| < n, (Fig. 1),
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The size of the space-charge regions is less than the mean free
path for any of the bulk processes, so no scattering occurs in these
regions, while their presence is allowed for by the additional potential
barriers U; (cathode) and U, — V (anode), Both physical conditions
are obeyed for 1 sufficiently small.

We also assume that the potential changes monotonically in the
space-charge regions, asin Fig. 1, where 1 is the cathode, 2 is the
anode, 3§ are the space-charge regions, and 4 is the quasineutral plasma.

1. Equations for moments and boundary conditions.
The Boltzmann integrodifferential equation is

gF (z) 3f (v, )
m vy

= K(f). (1.1)

af (v, z) af (v, )

Here f (v,x) is the distribution function for the elec-
trons, v is the velocity of an electron at point x at
time t, F = dU/dx is the electric field for an electron,
and K(f) is the collisional term, which takes account
of the various elastic and inelastic processes, being
expressed via integrals with respect to the velocity
variables. The boundary conditions are as follows:

cathode (z = 0)

a) v,/ (0, vy, v, v,) = zﬁxfk(]/vx'z — 2qU+/m, v, v,)
for v, > V2qU,/m, if t,>0 v, >0, 1if U0,

b)) vef (0, vy 2y, 9,) = 0,7 (0, — vy vy, V)

for V2qUy/m >v, >0, if U.20; (1.2)

anode (zr = d)

a ) U,\'f (dt Uyxy Uy ’!)2) = U.\'fa ( V Z,;Z: ‘2’/7(1]727—?—1_)/—’”; Uy, Uz)

for v <—V2q(Us—V)/'m, if U.—V30 {1.3)
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v, <0, if v,—V<o,
b) of (d, vy vy v) = 0f (d, — vy, v, )
Y Y (1 3)

for — V29 (U, —V)/m<v, <0, if v;—v >0. (cont'd)

Here fk(vx, Vys Vz) fa(vx,vy, v,) are the distribution
functions for the electrons emitted by cathode and anode,
which are assumed to be maxwellian:

0 = Ve s s (= 55).

falvg, vy, ;) = N (an’a)% exp ( —_ (1.4)

my?
2kT, ) :
Here Ty and T, are the temperatures of cathode

and anode. We convert (1.1)—(1.3) to the variables

mv2 .

2 Wo==

§ = x (p:_arctgl]l. (1.5)
Vg

s
The ¢ dépendence drops out because of the axial
symmetry in velocity space. In place of (1.1) we have

of (& ) u) ¥z - 9f (e, w)
et V” [ Ve=G=+

1—p2) 8 (e,
(21/!%) fgu”))1=K(f)- (1.6)

+qF(uVsaf(s W4

We expand the distribution function as a series in p:

fle, ) = fo (8) + pfy (e) + .7

The equations for the coefficients in (1.7) are found
by substituting (1.7) into (1.6), multiplying by p! (i =
=0, 1, ..., m), where m is the number of terms in
(1.7), and integrating with respect to p from —1 to +1.

The boundary conditions are found by multiplying
the boundary conditions of (1.2) and (1.3) by pli @ = 0),
2, ..., m— 2, with m even) followed by integration
with respect to u, from 0 to 1 at the cathode and from
~1 to 0 at the anode. These equations are equivalent
to those in the method of spherical harmonics [4,5] if
we ignore the field in the volume and the barriers at
the boundaries.

Now we take only two terms in (1.7) (the P, approxi-
mation of the method of spherical harmonics), in which
case the equations for f,(¢) and f;{e) become as follows
(the time derivative is omitted, as we are interested
in the steady state):

SV [V L g (el 4 OV K(f)du,
S 2 [y 1 pys ] 5 (uda. @.8)

The boundary conditions are as follows:

cathode (Y/ofo (&) + Yaf1(€)) =

U4sf0 (2) 71T, — 15 1 (8) (e73qU)" -+
4 1oty (e — qU1) (1 —e7qUy) for e > 49U >0,

Utafo (6) — uf (5)]  fOT O < gU;,

Vel (e —qUy) for q01<0 1.9)
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(Y/efo(e) —"fof1(e)) =

[Yafo (&) 671 (Ua— V) + Yfaf1 (8) (27'g (U — V)" +-
+1/21a(9—‘7(U2—V))><[1”“3_14(U2"‘V)]
= for e q(U.—V), g(U—V)>

[¥/ofo(2) + Yafr (8)] fOT 0 8<q (U2 —v,
Yofo(e—q (Us—V)) fOT ¢(U,—V)<<O.

anode

(1.10)

Here we have used the fact that fi; and f, are inde-
pendent of u. We expand fy(€) and f;(g) as functions of
the energy:

fo(e) = (e exp (— 75) 3, 4: () L[z ) @10
hile)= (éﬁﬂ)’ exp(— 47 i Bi(e) L (57 ) - (1.12)

i=0

The calculation based on retaining n + 1 terms in
(1.11) and (1.12) is termed the n-th approximation. The
functions L;{e/kTy) are polynomials of order i, while
Ty (the expansion parameter) may depend on x.

We substitute (1.11) and (1.12) into (1.8)—(1.10) and
multiply (1.8) by the function

3. #z i,
m (1:;0)‘/2 8(% >/ (/?%)
and (1.9) and (1.10) by

&Y 2" e
ml(kTy)"e L (W)

and integrate with respect to de from 0 to . This

gives us 2(n + 1) first-order differential equations for

Aj(x) and Bj(x) and n + 1 boundary conditions at the
cathode and at the anode. The equations are

n dB. (%)

2 Kii—jg

j=0

(_ aF dIn T, .
(2 N+ 8T 5,) By (@) = 1 (4, B), (1.13)

din Ty

r dA; () F
g (—-—,ZT—O 45+ Sij)Aj(x):

=J' (4, B) (i=0,1,...,n), (1.14)

Ky = 5 e>L; () L; (z) zdz,

0

Mi; = Se—x (Li(z)— L (&) Li (z) zdz,

Ny =\ e [(Lj (@) — L (x)) x — L; (z)] L; (z) dz,

o ]

81y = °§ e 2 (L @)

1]

— L @) — 5-L; (@)2] L (z) ds,

1

s Tae \ k) Ll V)
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T4, )—_&%_ogda S duK (f) Li (3 )uVs (1.15)
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The boundary conditions for (1.13) are as follows:

cathode
Ti (fkv Ulv TO (0)) =
- U 2 qU
:go {“i"(k";o&))“ﬁ 58w ) B
anode

Ti(/a: UZ‘—‘Vy To(d)) ==

:i “if[(%)f‘j —% Bu(@f—{u(—g"—) B]-]. (1.16)

3=

Here
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10T = X(gr— 15 ) w>0,

2nkT 3/zo'o e de
(5) "\ te—ar) 7 @ <0,
)]

exp (—z) L (@) Lj () (x —y)dz  (y>0),
o {y) =
exp(—2) L; (%) Lj(x)wdz  (y<O),

o we 8

o

205 (0) -+ S exp (— =) L; (=) L; ()X
Y

Ba =1 x((L)=1)ate >0,
a;(0) (¥ <<0).

Consider the K(f) term for the case where there are
only collisions of electrons with neutral atoms. Taking
the atoms as infinitely heavy, we have

K(f)= naUS (F (&, ') —f (e, W) 5 (B, &) sin O dd do
(v: ‘ﬁ;) Q.17)

Here n, is the density of the atoms, v is the velocity
of an electron, ¢ and u' are the coordinates of that
velocity before and after collision (e being unchanged),
# and ¢ are the angles for the rotation of the velocity
vector as a result of collision, and o4, €) is the dif-
ferential cross-section.

Substitution of (1.7}, (1.11), and (1.12) in (1.17), and
of (1.17) into (1.15), gives the following expressions
for the right halves of (1.13):

THA, B)y=0, L' (4, B)= K.B; 7
7=0

(z}_—.—:naQ, Q=2nS(1——cosﬁ)s(ﬂ)sinﬁdﬁ)- (1.18)

0

Here @ is the cross-section for momentum transfer,
which is assumed independent of the energy.

Equation (1.14) gives Kjj. Allowance for other types
of collision causes (1.18) to contain the corresponding

functions of the coefficients of the series (electron-
electron collisions and recombination give a form
quadratic in Aj and Bj, while ionization and inelastic
electron-atom collisions give a linear form).
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The integrodifferential kinetic equation in partial derivatives is
thus reduced to a system of ordinary first-order differential equations,

If this system is solved in the approximation n = 1, while Ty (x) is
put equal to the electron temperature at the given point, system
(1,13) becomes equivalent to the equations of diffusion and thermal
conduction for the electrons in [1], the first two boundary conditions
of (1.16) having the following* physical meaning: the number and
energy of the electrons escaping from an electrode and passing through
a plane parallel to it and directly adjacent to the barrier are equal
to the total number and energy of the emitted electrons plus the number
reflected by the barrier.

2. Convergence in energy space and choice of poly-
nomial system. Consider the series of (1.11) for the
isotropic part of the distribution function in the n-th
approximation.

The A are deduced by solving the equations of the
previous section; they are dependent on the choice of
the Lj(x), but substitution into (1.11) for the A, deter-
mined for different L;j(x) gives equivalent expressions
dependent only** on n.

We use Laguerre polynomials of index 1/2 as our

Lj; these are orthogonal with the weight exp(—x)x1/2:
S =2 Ly (2) Li (@) dz = 8381 T (i +%/s) - 2.1)

0

*These boundary conditions differ from those of [1] in that the latter
involved neglect of the contriburion from the anisotropic part of the
distribution function in calculating the current and the energy of the
electrons escaping from the plasma. This contribution is in fact small
when the diffusion theory is used.

**The choice of the Li(x) is not indifferent as regards
the best organization of the numerical calculations.
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Then n_ and kT for the f; of (1.11) are defined by the
first two coefficients:

no=Ag T =Tyl + A,/ A).  (2.2)

The Aj of (1.11) are dependent on the order n of the
approximation. Let f§(e) be the exact solution of (1.8).
We may say that for n — % the A tend to the limit

o

2\ [ (s 3. VLY g
A = (T,’L‘) (P(i+ ) ) \ 1o* (e)Li<m) Veds. (2.3)
[
Here the Aj* are the coefficients in the expansion
with respect to the Li(e/kTy) in a space with weight

p(e) for @(e):

- n *fa —e
ple) - Ve (m‘) exp o7,

— g [t E)
(P(S) - VS o (€) *
To get the f(e) for n — « we must have that the
series for ¢(g) converges. This requires finiteness in

R = (2.4)

= B p(e) |@(e)|2de = (2:1’1;7’0 ).-;,L, 3 exp% (fo* (8))%eVede.

0 0

Let the asymptotic behavior of f§(€) be as exp(~¢e/
/kT,); then R is finite for T, < 2T;. The effects of
the field and of collisions that produce a redistribution
of the electron energy (electron~electron and inelastic
electron-atom collisions) become small for ¢ — «, so
the energy distribution becomes as for the emission
from the hotter electrode (always the cathode), so we
may put T, = Ty.

Thus the convergence is dependent on T,. The dif-
fusion theory is equivalent fo n = 1, and there T is
chosen so that kT is the mean energy of an electron.
Extending this method of choosing T,, we get from
(2.2) the condition*

A, =0. (2.5)

It is quite possible that this choice of Tj causes the
condition Ty < 2T, to be violated at some point; then
the series is divergent** for n — =, although a rea-
sonable result may be obtained for n small (the dif-
fusion theory for n = 1).

*This may be given the following variational inter-
pretation: T, must give the extreme value of

S' lnp (T, 8)f, Vede,
0
which resembles the expression for the entropy

{ (nj)fYede.

0

**But it can be made convergent by truncating the
distribution function for the electrons escaping from
the cathode at some finite energy. This cutoff energy
may be arbitrarily large, so, in principle, in that
case we may obtain an exact solution.

We can choose Ty in a different way be requiring that
Ap = 0. (2.8)

Conditions (2.5) and (2.8) coincide for n = 1, so they are both
possible generalizations of the way of choosing T in the diffusion
theory. The asymptotic behavior of fj(e) is as exp(—&/kTk). It can be
shown that the coefficients in the series are dependent solely on the
asymptotic behavior for n sufficiently large, so the coefficients of
fife) will be proportional to those of exp(—&(kTy), and these are prou-
portional to

Ty 1
(1—75) 3

Hence condition (2.6) for n—> « is equivalent to T = Tk, so the
Ap tend to 0 and the series converges.

Consider now the case in which we allow only for the collision of
electrons with infintely heavy atoms, while U; and U, — V are
positive (reflect electrons from the plasma); some of the electrons are
trapped in a potential well, This problem has been considered in
papers on these converters [8, 9] ; the initial integrodifferential equa-
tion then has many solutions. In fact, in this case we cannot neglect
the electron energy changes that always occur in-collisions, or the
lateral loss of electrons; but the solution to the equations for the
moments of section 1 is unique for any n.

The Aj and Bj for n— w correspond to a single distribution function
for the electrons; to derive this function unambiguously from the
initial integrodifferential equation we must find the collisional term,
which leads to energy relaxation for the electrons. We allow the cor-
responding relaxation time to tend to infinity to get in the limit a
solution to the integrodifferential equation that gives the desired
distribution.

3. Allowance for space-charge field in the quasi~
neutrality approximation. Equations (1.13) and (1.16)
with condition (2.5) define the electron distribution
via Aj(x) and Bj(x) for a known potential distribution.
To determine the latter we need to know the charge-
density distribution. Here the diffision approximation
is sufficient, taking the ion temperature equal to the
atom temperature [1], the latter being determined
from the equation of thermal conduction for a gas (the
effects of the electrons and ions on the neutral gas
may be neglected, as the plasma is only weakly ionized)

v, dlgn
Ton—32 =0, 3.1)
in which T &) is the temperature of the atoms. The
boundary conditions give the solution as

. T\ s
Ton @) = T(14+[(72)" ~1]5)" @2
in which Ty and T, are the temperatures of cathode
and anode.
The ion current I is [10] given by

dn, 1 dTg, F
I+:—qD+(d; +(kf+1)n+T—an & +,€—Zﬂ;n+)' (3-3)

The conservation of charge gives

dI dl_
Fr i (-4)

The electron current L is expressed via the By, _
while the diffusion coefficient D, may be put as D+ =
= L+v+/3, in which L is the mean free path for an
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ion, whose thermal velocity is v,. We assume that
kt = 0 for thermal diffusion (Chapman and Cowling
state that this corresponds to diffusion of particles
in a gas when the particles and atoms are of the same
size). The boundary conditions for (3.3) and (3.4) be-
come as for electron diffusion in the approximation
n = 0 (with allowance for the change in the sign of the
barrier for the ions and for the relation of A  to n,
and of By to [,).

We express n; in (3.3) via (2.2) and the quasi-
neutrality condition

n, (z) = n_(z). (3.5)

Then (3.3) may be used to find F = dU/dx, while the
boundary values Uy and U, for U are determined by the
boundary conditions for (3.3} and (3.4).

This method of allowing for the field of the space charge will be
rigorous if the conditions stated in the introduction are obeyed. To
test whether the solution corresponds to these conditions, we must
estimate n_ — n__ for the region of the quasineutral plasma from
Poisson's equation

a2 /dz? = 4 mg {n_—n.).

it is also necessary to solve Poission's equation for the regions near the
electrodes, The boundary values are the potentials at the boundary of
the plasma (i.e., U, and U,) together with the known electrode poten-
tials, while the size of the region is chosen to be such that dU/dx
becomes zero at the boundary with the plasma (this is equivalent to
the condition for continuity in dU/dx for r—> 0).

4. Numerical solution, The problem is that of solving (1.13), (3.3),
and (8.4) subject to the boundary conditions. From (2.5) and (3.5), the
unknown functions are

Us (), To (2), Au(z), Az (2),--es
An (2), 1, (2), Bo(z),..., By (2).

In general we may put that

d
y;;:c) =h ..oy =1 ,2m). (&1

The boundary conditions are

Frloi(0..)=0 (k=1, ..., m),

From (oyi(d)..) = 0. (4.2)

These and the differential equations are nonlinear, the former
being given at both ends of an interval, x=0 and x = d.

Equations (4.2) are considered as 2m nonlinear equations in the
functions yj(0) at x = 0; the yj(d) are deduced from the yj(0) by numer-
ical integration of (3.6) by the Runge-Kutta method, Newton's method
[11] being used to solve the nonlinear system,

The following example takes account only of electron-atom
collisions for the case mentioned at the end of section 2; at cathode
and anode there are barriers that reflect electrons, Electron or ion
emission from the anode is neglected. Figure 2 shows the results for
nofl, 2, 3, and 4 for the following values of the dimensionless
potential:

Here N, and Ni. are the densities of the emission fluxes of ions
and electrons at the cathode {see (1.4)], while L4 and L_ are the
mean free paths of those particles at the cathode. The ordinates are
the dimensionless quantities

T[Ty, w*=qU /KT, n_|N,,

(No = VN, V).

Here Ny is the equilibrium charge concentration at the cathode.
Ten steps were used in the Runge-Kutta integration from x = 0 to
x = d; doubling the step for n = 2 altered only the fourth significant
figure.

I am indebted to G, E. Pikus for direction and assistance, and to
L. A. Oganesyan for assistance in programming the problem for the
computer.
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